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Abstreaect

A brief review is made of the recent studies on
transonic aerofoil sections performed in NAL,Japan.

It was found that we can obtain exact solutions
for the flow pest various aerofoil sections if we
only superpose additional functions to the well-
established hodograph solution for the lifting
circular cylinder. Various sections have been com-
puted until now; some of them were tested in 2m.
transonic wind tunnel and results showed a good
agreement with the theory.

An additional remark is given on empirical pro-
cedures developed in parallel with the above theory,
which furnish us with a quick access to the aero-
foil design problem.

1. Introduction

The study on the transonic aerofoil problem
started in NAL in 1966 around, when we were inform-
ed of the concept of 'peaky' aerofoil sections
originated by Pearcey'l/. This problem seemed so

.attractive to us that we started various experi-
mental trials in order at least to understand and
realize this new concept. As this concept implied
a shock-free (isentropic) flow around an serofoil,
we thought that a theoretical approach would be
feasible as well., Hence re-examined were the clas-
sical the?ries %ncluding exact theories of
Lighthill 2,3,4) gnd Cherry(5 as well as other
approximate theories.

In 1967, we were favoured with a copy of
Nieuwland's paper from which we learned that
Lighthill's theory had actually been applied by him
to the theoretical design of transonic aerofoil
sections. Later information revealed that a series
of symmetrical 'quasi-elliptical' sections had been
already computed by Boerstoel(’) and published in
a form of catalogue. As we thought that NLR's work
was almost complete and that we could not add any-
thing of importance, we gave up our effort to in-
vestigate symmetricel (non-lifting) sections. As to
the lifting aerofoils, however, Nieuwland had shown
only his ?rgcedure of theoretical computation at
that time'8/, and we had a feeling that his theory
involved too much complication. Hence we decided
first to concentrate in building up a theory for a
lifting aerofoil based on a different standpoint,
aiming at a mathematically rigorous theory all the
same.

In 1970, we completed the theory together with
the computer program for the calculation of aero-
foil sectjons; most of them were worked out by
Tekanashil9/. The outline of this theory will be
described in Section 2, and the results of wind-
tunnel tests of the aerofoil sections obtained by
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this method will be described in Section 3.

At the time we started the above investigation,
we anticipated that it would take naturally a long
time to accomplish it. Hence we considered an al-
ternative approach in perallel. This was an empir-
ical process using well-established techniques in
the low-speed aerofoil theory, the Prandtl-Glauert
rule, and sometimes an empirical relationship be-
tween subcritical and transonic characteristics of
an aerofoil. A short comment on this empirical
method will be given in Section k4,

2. Theoretical Work Based upon
Hodograph Method

2.1 The Concept of the Hodograph Method

In the present paper, the author does not intend
to enter the mathematical detail, but a short in-
troductory comment on the classical hodograph method
must be necessary.

The hodograph equation for the stream function
¥ of the two-dimentional potential flow of a com-

pressible fluid, on the assumption of isentropic
gas law, can be written as:

3%y 2-y 3y 1 y+l 32y
waenli sl TR+ - Tt = 0.

where

2- 1
v =1 )
pax l+—l—m

<

g and © are the magnitude and inclination (to the
axis of reference) of the local velocity of the
flow; gpox is the limit speed; M is the local Mach
number; and y is the ratio of the specific-heats.

We want to construct the flow field by super-
position of the following Chaplygin's solution
for Eq.l:
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In these expressions, F is a hypergeometric function
that is regular at the point 1=0; and v denotes an
arbitrary complex number, negative integers -2, -3,
-4,sses Dbeing excluded.



Now, let us assume that the complex velocity
potential w of an incompressible flow past an ob-
stacle can be expressed in terms of the complex
velocity ¢ =ge~1Y by the integral¥*

joo
v (@) =g emtntey (5)

—jw

where G(v) is a meromorphic function of the complex
variable v, and may be determined from w(z) in a
closed form by use of Mellin-transform theorems 8
The compressible-flow solution corresponding to the
above incompressible counterpart is then given, in
the form of the stream function ¥, as:

¥ = Im.[w],
joo
W= leiJ_imG(") £, (r)e (-1 ey . (g)

In this expression, T; is the value of t correspond-
ing to the speed at infinity in the physical plane,
which is assumed to be subsonic and taken as unity
for convenience' sake, i.e. 1) '(l/qmax) ;3 on the
other hand, fv(rl) is the so-called compressibility
factor satisfying following conditions!2

(i) £,(11) is & meromorphic function of v, having
at most simple poles with real residues on the real
exis exclusive of 0, -1, -2, =3,°°°"°

(ii) £ (11) vty mV/2, as 1y >0,

(iii) There exists a function a(1y) such that

folry) ~ a(r1)e™VSy  as v =+ o, where

s1= s(11),

s(t)= - , tan h-l ’Y+l 2 log(2y-2)
/ /—1(+1
t anh™ Y+1 - —tanh

LY

( +l)T

y-1 ) 1-

% log t ( t-0). (1)

Condition (ii) ensures that the compressible~
flow function (6) tends to the original incompress-—
ible-flow function (5) as the uniform-flow Mach
number approaches zero, since fy(t11)y, (T)NTIV/Z v/2

= gV as gpgx * ®. Meanwhile, condition (iii) en-
sures that the integrand in Eq. 6 behaves, in the
subsonic region, like that in Eq. 5 in the limit

v + ® 5 and, in particular, the behaviour of the
former near t=T1) is identical to that of the latter
near g¢=1, since ¥, (1) is asymptotically equal to
v(t)evVs as

( v(t) is also a function of T.)
The Chaplygin function ¢,(1) is also a meromor-
phic function of v, which has only simple poles at
v=-2, -3, -4, .... ; hence the integral in Eq. 6
can he evaluated by the residue theorem yielding
series expansions which are valid in different
regions of convergence in the hodograph plane. The
series expansion also provides the means of exten-—
sion of the solution to the supersonic region.

2.2 The Generating Function

As we have seen in Section 2.1, the compressible-

¥ The development of the theory is also possible
if w(z) is expressed in a series form. In this
paper, however, the integral form (5) is preferred
for the sake of consistency.

v + « for a subsonic speed t<(y-1)/(y+l).
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flow function (6) can be constructed from the in-
compressible-flow function if the latter may be ex-
pressed in either a series form or an integral form
(5). This approach has been teken by many investi-
gators, starting from incompressible floYs gast
simple-sheped obstacles such as circular 2,

and elliptic(6,8) cylinders, including non-lifting
and lifting cases (see CASE IvIV, Table 1).

As we are starting from an incompressible flow
in this approach, we can get at least some notion
of the final shape of the obstacle even though it
suffers a considerable change in the course of
incompressible-to~compressible transformation; and
above all, we can have a precise knowledge of the
singularities of the flow that must be preserved
through the transformation to the compressible
flow. The hodograph plane of the flow past an ob-
stacle is in most typical cases composed of two
sheets of the Riemann surface. If it concerns a
flow past a non-lifting body, the essential singu-
larity in question is of the type:

wn (1-g)7V 2 (8)

located at the point =1 which corresponds to z=-«
in the physical plane. It represents a branch point
there, and also a dipole covering an angular range
of bn (spreading over two sheets of Riemann surface
If the flow involves circulation TI', on the other
hand, the branch point is located at another point
=C,, say, which corresponds to a finite point in
the physical (z-) plane; while to the point z= «
corresponds the point £=1 on only one sheet (ten-
tatively named as the 'upper sheet') of the
Riemann surface, and there the complex velocity-
potential w has a singularity of dipole and vortex
which is expressed as:

(9)

Note thet the flow is regular at the point f=1 on
the other sheet( the 'lower sheet').

il 1
W 5= {1-C + log(1l-z)}

Such are the only singularities (except the com-
plementary singurarities at = «) which appear in
the hodograph plane when one deals with the flow
past a circular cylinder; if one treats more com-
plicated flow, however, other singularities would
naturally appear. In the case of an elliptic cyl-
inder, for instance, there comes at r=1/e (e de-
notes the eccentricity of the ellipse) an addition-
al singulerity which is similar to the one at z=1;
for the lifting case, still another singularity
(a branch point) appears at {=z,', say, which is
similaer to that at £={,. Due to these additional
singularities the formulation of the solution for
an elliptic cylinder is much more complicated. We
owe Nieuwland for his laborious works(6:8) on the
solution for an elliptic cylinder.

Now, neither the elliptic nor the circular cyl-
inder is a shape of particular interest to the
practical aerofoil design. Working with an elliptic
cylinder, however, one can get possession of a new
arbitrary parameter e which is useful in varying
the thickness-ratio of the resulting profile. In
addition to that, Nieuwland(®) used & certain
series solution of the fundamental equation (1),
which was superposed to the original solution for
an elliptic cylinder in order to 'unbalance' the
flow conditions at the front and rear parts of the
aerofoil, hence adjusting the leading-edge radius
and also eliminating the formation of a cusped
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leading-edge. With these supplements to the
classical theory, he was successful in obtaining
the flow past obstacles which, after the compress-
ible transformation, looked like realistic aerofoil
sections, lifting and non-lifting.

Taking into consideration of the fact that
Nieuwland's procedure would impose us too much la-
bour for the numerical computation of a lifting
aerofoil, we now make what is in a sense a fresh
start, taking the following function as the gene-
rating (incompressible-flow) function. In a similar
way as that has given sometimes fruitful results in
the tradition of the classical aerofoil theory, we
take as the basis the simplest flow: the flow past
a (lifting) circular cylinder. We then intend to
modify it by means of superposition of other flows,
which would result in an effective measure of vary-
ing the final shape of the profile. .

We assume the form:

w(z)= w'%)(z) +w(f)(c) +w(g)(c), (10)

where

wW(O(0)= {H1- = -108(1-0))

- z 1/2
il 1y cz2=ny /2 (0 1 (zp-131/2, 1
+h" {(1+ l-C)(C2-1] - 1—C(C2—C] g } ( )
Hereafter, in this paper, we put
Ly = 1-(T/bm)2, ( 0<|za]<1) (12)

for the sake of simplicity; then Eq. 11 reduces to
Eq. T-ITI.2, and w(0)(z) is exactly the flow past
a lifting circular cylinder. At a later stage, how-
ever, another possibility will be considered in
which £, is extended to be a complex number (see
Section 2.4).

Meanwhile, for w(?) and w(é) are chosen the
following functions as a first attempt:

w{®)

~{(1-2/25)"1/2 4(1-7/1,)1/2}, (13)

WwlA) o 1 2-(1+e)z/z2 (1h)

(1-e)1/2 {(1-t/5,)(1-€1/2,)}1/2

ié
where e =egge” , and e€g and § are real parameters,
and O ggq < 1.

It will easily be seen that wEA) takes the form
of the flow past a non-lifting circular cylinder,
the sign reversed and the branch pojnt shifted from
t=l to Z=r3. In a similar manner, wif) is taken to
be a flow past a non-lifting elliptic cylinder, with
the branch point originally at z=1 being shifted to
t=Cy. Hence, each of them possesses a first-order
branch point at the point z=g¢, in common with w(o);
and a certain singularity (similar to that at z=1
of Eq. 8) of ng)and w£A¥ at £=r, cancelling each
other, wsA) + ng) does not diverge at r=r,.

Now, let us examine Yh?t kind of (incompressible)
flow the function w =wlO +w£A) +W£A) does repre-
sent.

(i) If e=0, then ng) + wéA) vanishes; hence w

= (0 ) naturally represent a flow past a circular

cylinder with circulation.
(i1) If 6=0 and I=0, then £,=1, and w(0) +w{A)
vanishes in turn; hence
P (=W§A))= 1 2—(1+€0)C
(1-€0)1/2 {(1-5)(1-eqz)}!/2

> (15)

and this represents exactly a flow past a non-1lift-
ing elliptic cylinder with the eccentricity ej, the
length of ,its major and minor se?i-axis being
2(1-gq)-! 2(1+eo) and 2(1-g4)7! 2(1-50), respec-
tively.

(iii) If 6=0, e%0 and I'+0, then w represents a
flow past a body of fore- and- aft symmetry, re-
sembling closely an elliptic cylinder, provided that
T is small(see Fig. 1).

Ist sheet

2nd sheet

(b) HODOGRAPH PLANE

Fig.l. Incompressible flow past a pseudo-
elliptical body:e9=0.13, I'=k.0, 6=0.0 .

(iv) If 6%0, then w does not represent an incom-
pressible flow past any closed body. As will be seen
later (Section 2.4), however, the parameter § plays
an important role in making the body closed in the

compressible flow.

The integral representation of W(O)’ ng), and
whA) 1is given in Table 1 (Eq. T-V.3); the paths of
integration are not shown in this paper (see Ref.9).
We constructed thus an artificial flow w(z) by

s X?rpositi n of 'ready-made' flow functions w(o),
w? , and WZA). The advantage of such a combination
will in due course be verified.

2.3 The Incompressible-to-Compressible Transformation

We are going to transform the above @enerating)
function to that of the compressible flow, following
the procedure described in Section 2.1. First we
have to determine the functional form of the com-
pressibility factor fv(rl) to be used.
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The simplest function which satisfies the condi-
tions (see Section 2.1) imposed on fv(Tl) is
-vs]

f (Tl) =e (16)

v

However, we should not use this for the transfor-
mation of wl0 , because the stream function V¥ Y
obtained in this way would have such an unacceptable
behaviour that it would not recover its original
value when the singular point rt=t1;, 6=0 1is encir-
cled once. This multivalence is caused by the sin-
gularity of w(0) expressed in Eq. 9. It has been
demonstrated originally by Lighthill(2s%) that, in
order to avoid this difficulty, we should use

w_v(T1) +2T1111_'\)(T1)
1-v

(17)

fv(Tl)

for a flow with circulation like w(0). (The prime
in the above expression denotes the differentiation
with respect to t.)

In contrast to that, we are Justified to apply
Eq. 16 to w{A) and w&Aj because they, representing
flows without circulation, do not suffer from such
singularity.

Hence, the compressible-flow function correspond-
ing to Eq. 10 is given as W described in Eq.T-V.h
of Table 1. (The statement on the paths of integra-
tion is omitted again.) It should be noted that, in
contrast to e~VS1l which has no pole all over the v-
plane, { v—y(1y)+277¥ly(11)}/(1-v) has simple poles
at v=1, 2, 3, *** ; therefore the integrands of the
first two integrals in Eq.T-V.4 (which are the same
as those in Eq.T-III.4) come to have double poles at
v=2, 3, b,*++*, and also quite a detrimental simple
pole at v=1l which will be discussed later in this
Section.

At all events, the integrals in Eq.T-V.4 can be
evaluated by way of the residue theorem to yield a
set of infinite series involving Chaplygin's par-
ticular solutions (2). The solution w in {(t,6) plane
has several singular points corresponding to those
of w in r-plane [e.g. (1;,0) corresponding to r=l;
(15,0) to z=f,]. It follows that each series solu-
tion has a specific region of convergence, and the
evaluation of the integral solutions by way of se-
ries expansion must be performed separately at each
region of convergence. (The process of this evalu-
ation will not be presented here; see Ref.9 for the
detail.)

Once the stream function Y has been established
in series form on the hodograph plane, it is not
difficult to obtain its transformation onto the Z
(physical) plane from the following equations (de-
rived from the basic hodograph equation and the
definition of the stream function):

3z _(1,y1/2 21 i6(9¥ i QY

w0 e ¢ et ]

3z (N2 ot iggi 3y

w6 e ¢ e gl
+1

1=

Now, the compressible-flow solution is formaslly

ay
96

}
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determined. In the case of a flow with circulation,
however, the series solutions expressing the flow
near both stagnation points (t=0) contain terms of
the form ¢;(t)e~18 which come from the residue of
of the pole at v=1 of £f,(t;) in Eq.17; consequently
the position coordinates in the physical plane be-
come logarithmically infinite for 10, and the clo-
sure of the body contour (i.e. the streamline ¥=0)
breaks down as far as the free-stream Mach number
is not equal to zero. y

Therefore, we have to take some measure in order
firstly to obtain a flow with a regular stagnation
point at the front of the contour. (The problem of
getting the contour closed at the rear will be dis-
cussed in Section 2.4.) It has been recommended(5,8)
for this purpose to subtract the detrimental terms
cited above (and also other inessential terms),
which appear in the region covering front stagnation
point, from the series solution for this region as
well as from those for all other regions. As these
terms themselves make solutions of the basic equation,
this manipulation is permissible as far as these
terms are convergent in all regions.

After all, we have the series solution modified
as follows. (Only the solution in the neighbourhood
of the front stagnation point is shown in this
paper. )

Y = Im. [K(°)+K§A)+ng)], (19)
oo VE(Ty 42T pR (1) S
K(0)=nzzcn n o 11)n(_l_)e i 9’ (20)
KgA)= E B, 1y (1) -inb (21)
n=2
in®6 (22)

KgA)= 3B 8Ty (v )5
n=2

where y#(1) denotes the Chaplygin function of the
second kind -(note that y,{t) of Eq. 3 hitherto used
is the Chaplygin function of the first kind)-
defined as

BA(T) =lim (vsn)uy(n),  n=2, 3, h,eer  (23)

v-n 9V

and Cp, B,, Dp are the coefficients of the Taylor
series when w(0)(z), w{A)(z), and wiA)(z), respec-
tively, are expanded in the neighbourhood of the
front stagnation point, i.e.

R
+ i (2 ) (24)
By = L3 ‘”‘ﬂﬁg‘?/if' : (25)
o R i o
e B r L, nnts ome 35 )] (26)



2.4 Additional Techniques for Obtaining Aerofoil
Sections

In addition to the fundamental procedure describ-
ed in the previous sections, we have to establish
other ad. hoec. techniques in order to obtain a flow
past an aerofoil section.

The solution Eg. 19 yields certainly a flow with
a front stagnation point as far as the free-stream
Mach number M) is restricted within small values
(i.e. 11 is small). As M, increases, however, the
leading-edge radius becomes smaller and smaller. If
we take an example of non-lifting symmetrical flow
( T=0 and 6=0) for a large value of ey, the leading-
edge degenerates into a cusp beyond a certain Mach
number Mj, though the profile still keeps a closed
contour at both edges (see Fig. 2). The situation
becomes much worse in the lifting case, in which we
should expect that the contour might fail to close
up even at the front.

Here we try to superpose on Eq. 19 another series
equation Im.[AL], which is convergent for 0gt<l and
tends to zero as M0, in the expectation that a
moderate amount of the leading-edge radius would be
thereby maintained at higher Mach numbers. Eq.l9 is
hence revised again to yield

¥ = Im,[K(O)+KSA)+K£A)+XL], (27)
where XA is a real parameter. The function L is the
femiliar series solution which comes out when one
executes the analytic continuation of K&A (the flow
past a non-lifting elliptic cylinder) encireling

once round the branch point rt=1,,6=0 , and defined
as:
v -n{a,-1)1(n-by)! 1 nsy in®
s ) e (1)e (28)
nzz n{ Tamoni 11 (=B T (n D7) ¥nlT)
where

= =2 27 (n-1)1t 1 1
En— (1—6%1/2. {(_l/g)?"(n_l/e)l F(E, n; n+t=; E)

wn!

-t AT (errya

F(%, n+l; n*%; e)} (29)

This is a technique quite similar to that used
for the same purpose in Nieuwland's theory for
a non-lifting elliptic cylinder. He then built up a
solution which in our notation would be expressed
as:

¥ = Im.[KgA)H\L] ; (30)

and he investigated the effect of the second term
AL, which showed a marked effect in controlling the
leading-edge radius of the resulting aerofoil. Com-
ing back to the solution (27), we notice by actual
computation that the term AL still works as an ef-
fective element controlling the leading-edge radius
Ry for both non-lifting and 1lifting cases. An exam-
ple of symmetrical profile with a finite leading-
edge radius obtained by (27) is shown in Fig.3.

Having settled the problem of the leading-edge
redius, we now face to the last difficulty concern-
ing the closure of the trailing-edge, which is not
yet ensured in the lifting-aerofoil case. It can be
seen from the computation of the flow by the proce-
dure developed so far that there exists a saddle
point at a certain point S on one sheet of the
hodograph plane, where 5%/56=3¥/31=0. The saddle
point corresponds to a first-order branch point on
the physical (z-)plane, and the above fact implies
that Z-plane is also constituted of two sheets of
the Riemann surface. Bearing in mind the assembly of
streamlines on the hodograph plane, we notice that
there must be one streamline thet will pass the sad-
dle point S. Assume that it is the streemline ¥=c,
say. Then two branches of ¥Y=c meet at S on the hodo-
graph plane; on the physicel plane, two branches of
the mapped streamline ¥=c would certainly cusp at
the branch point corresponding to S. As to any other
streamline (¥%c) which does not pass the saddle
point S on the hodograph plane, one branch of its
image on Z-plane goes to infinity on the first sheet
while the other branch passes into the second sheet;
and they will never meet again. The latter situation
generally occurs for the streamline ¥=0 that would
build up the contour of an aerofoil; it follows that
the profile does not close up at the rear end. Only
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if, by any chance, ¥=0 be the proper streamline
that passes the saddle point S on the hodograph
plane, we would have a closed profile with a cusped
trailing-edge.

If we want a closed profile in general cases, we
have to take a device by means of which ¥ will sat-
isfy the condition

Y £hd

3 - 3T =¥=0
simultaneously at a point S on the hodograph plane.
Due to such device, the local condition of the flow
must naturally be modified since the contour be-
comes now closed by its application; it is desira-
ble, however, that it would not so much modify the
general aspects of the original fow configuration.
There are various possibilities for such device.

(31)

(i) One of them is to superpose to the present
solution still other supplementary solutions with
arbitrary constant factors. These factors are de-
termined in such a manner that ¥ in total would
satisfy the condition (31) at the point S. This is
the technique used by Nieuwland 8), and we followed
this process at an early stage of the computation.

(ii) Attention is now called to the fact that we
have another arbitrary parameter § at hand (see the
comment in (iv), Section 2.2). The whole flow field
¥ undergoes a gradual change with variable §.
Hence, by proper choice of the value of § we can
satisfy the condition (31) at a certain point on
the hodograph plane with pre-determined values of
T1,€0, A, and T ; the saddle point (tg, 64) hereby
being submitted to a slight deviation from its
original location at 6=0. As the increment of ¥ due
to § is shown to be of the order

2eq(l-gq)~3/2 & (1f |8|<<1 )
at the rear part of the aserofoil, we can estimate
from this the approximate value of § by which Eg.
31 becomes satisfied.
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Pig. 5. Profile shape and local Mach-
number distribution of the 7523-10
section. Comparison between the test
resilt and the theory.

(iii) Finally, another device is to release g,
from the fixed real-vaelue 1-T2/1672, and extend it
into the domain of complex numbers. That will pro-
vide us even other arbitrary parameters.

If we use the devices (ii) and (iii) Jointly, we
can satisfy the condition (31) at a specified saddle
point (rs,es). The conversion from the device (i) to
this is under way in our system of computation.

2.5 Discussion to the Present Theory

Reviewing the present theory, we emphasize that
twofold simplication is hereby achieved in respect
of numerical computation. Firstly, the series solu-
tion for W in the present theory is expressed by
only doubly-infinite series. (See Egs.19v22, for
instance, in which the coefficients C,; etc. are
regarded as (singly-infinite) series because they
include hypergeometric functions: see Eq. 24 etc.)
On the other hand, if we start from an incompress-
ible flow past a lifting elliptic cylinder (CASE TV
in Table 1), we should have to deal with triply-
infinite series since the ccefficients themselves
would make doubly-infinite series. The reduction
from a triple to a double series saves a great deal
the labour of numerical computation. Note that it
results from the particularly simple form of the
original flow function used in this theory. Second-
ly, as was mentioned in Seetion 2.3, the s%mplest
f e=VS1 of f,(1;) can be used for wiA) and
W2K$; the use of e~VS1 which has no pole in the v-
plane turns out to eliminate the appearance of
double poles at v =2, 3, L,-++- in the integrand,
and hence serves in reducing considerably the number
of series to be computed.

Various lifting profiles with shock-free mixed-
flows have been computed by the present method. Typ-
ical examples are shown in Figs. 4, 5, and 6. A fea-
ture of profiles of this particular family is well
shown by the shape of the profiles and the local
Mach-number distribution. Each of them has a mild
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suction pesk Just downstream of the leading-edge,
and a certain amount-of camber distributed all over
the chord length. The impression of such features
of profiles is that th?y lie intermediate between
NIR's lifting aerofoil(l®) and that of Garabedian-
Korn's{1),

After all, the shape and characteristics of each
profile calculated by this method are determined by
several parameters; T;,€0,A, and T being the essen-
tial ones. If § and complex 7, are included, the
number of parameters would further increase as long
as they are not consumed during the process of
getting the profile closed. Such number of arbitrary
parameters would be sufficient to represent the
gross feature of the flow past a specific aerofoil
section. To modify the local conditions, however,
additional scheme would perhaps be useful. In con-
sideration of the fact that the original flow-
function used in this theory is a composition of
those for circular and elliptic cylinders (in which
the branch-point singularities in the hodograph
plane dominate in characterizing the features of
the profile), a theory for the flow with additional
logarithmic singularities, located inside of the
body, is being developed now.

3. Experimental Verification of the
Pressure Distribution of Aerofoils
Obtained by Exact Theory

After the completion of the theory described in
Section 2, we went ahead, as a matter of course,
with wind-tunnel tests of some of the profiles
obtained, and particularly aimed at the experiment-
al verification of the (shock-free) pressure dis-
tribution on the wing surface 12) The wind tunnel
used was 2m.x 2m. Transonic Tunnel in NAL; the Rey-
nolds number, based on the chord-length of L00 mm.,
ranged 3.854v5.5x106 depending on Mach numbers.

3.1 T7523-10 Section

This is a profile obtained at an early stage of
computation. Tt is of 10.3%'thickness and designed
for Mw (=M; in the theory)=0.TU5 and C;=0.23 (see
Fig.5). The distribution shows a mild peak at about
5% chord point on the upper surface, and the local
Mach number of 1.12 is attained there.

The model (of 2m.-span and 4O0mm.-chord) was
located at the centre of the test-section, spanning
the whole test-section width from a side-wall to
the other, and supported at both tips by a pair of
metal arms which passed through the slots of glass-
windows and were fixed to the outer frame of the
test-section.

Originally, the test-section of this tunnel had
been equipped with perforated walls of 20% open-
area ratio on the four sides. As this particular
test was of two-dimentional in nature, both side-
walls were covered from the outside of the test-
section with aluminium plates of 3mm.-thickness
close to the original wall-plates, and they worked
practically as solid walls. The top- and bottom-
walls maintained their original configuration.

The pressure distribution was measured by press-
ure orifices drilled at the mid-span section and
also the quarter-span section (500mm. apart from
the mid-span section)of the model; a pitot-rake
situated at one chord-length downstream of the
trailing-edge was used for the weke survey. Tests
were performed mostly with natural transition on
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Fig. Ta. The upper-surface pressure distri-
bution of the 7523-10 section at a= 1.5°.
Natural transition.
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Fig. Tb. The lower-surface pressure distri-
bution of the 7523-10 section at =1.5°.
Natural transition.

the model, but tests with fixed transition as well
as tests with varied open-area ratio (of the top-
and bottom~wall )were also performed at a later
stage. ’

It became clear at the first test that the meas-
ured pressure distribution at the design point (M.
=0.745, a =0.7°) did not show the best agreement
with the theoretical distribution. The reason of
the discrepancy was considered to be:

(i) The boundary layer effect, which caused the
modification of the effective body-shape (displace-
ment effect) on the one hand, and also a certain
loss of the 1ift, on the other.

(ii) The wind-tunnel wall interference vas expect-
ed to be negligible in our initial, wishful think-
ing; but in fact it was not so. Ebihara et. al.(13)



performed several theoretical analyses and derived
the subcritical characteristics of this profile,
which could be regarded as interference-free values.
(Their analyses included the linear theory and the
boundary layer calculation which were only applica-
ble to suberitical conditions.) They compared these
values to the experimental results, and found that a
wall-interference effect of considerable amount (
corresponding to the change of the angle of attack
of approximately 1° at this Cy level) seemed to
exist in the test results even at such suberitical
Mach numbers. There is no reason why the similar
effect does not exist at supercritical conditions.

If a certain loss of 1lift occurs by some origin
or other, it would certainly influence the position
of the leading-edge stagnation point. That, in turn,
will alter the process of expansion following the
stagnation point (which is quite critical for the
existence of a shock-free flow), and might spoil the
whole flow field predicted by the theory.

The discrepancy would be reduced to some extent
if we compensate for the defect of the 1lift by in-
creasing the uniform-flow Mach number and/or the
angle of attack. In fact we found that the best
agreement with the theoretical pressure distribution
could be attained at M»=0.751 and 0=1.5° (Fig. 5):
this happened to be one of the test conditions in
which the position of the front stagnation point was
very close to that obtained from the theory. Agree-
ment of the lower-surface distribution is acceptable
notwithstanding the difference in the flow condition
between the theory and the test. Agreement of the
upper-surface distribution is not bad, too, but we
notice that the nose-peak Mach number is somewhat
higher in the test data. We notice also that a
slight over-compression follows as a result of the
reflecticon, at the sonic line, of the above-mention-
ed over-expansion at the peak.

Fig.7 shows the pressure distribution over the
profile et varied test Mach numbers,the angle of
attack being fixed at 1.5°. At Mach numbers higher

I 752310
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Fig. 8. The upper-surface pressure distri-
bution of the 7523-10 section at M«=0.T50.
Natural transition.

than 0.76, the shock wave gradually develops at the
recompression region rear of the peak,and proceeds
rearward as the Mach number increases. At Mach
number below 0.75, we cannot identify the shock wave
from the pressure-distribution curve; if it does
exist,it must certainly be very week,and difficult
to distinguish from the isentropic compression
following the peak.

Fig.8 shows the pressure distribution curves at
various angles of attack with the Mach number fixed
approximately at M, =0.75. In a similar way to Fig.
T, shock waves are recognizable only at angles of
attack higher than 1.6°. As is expected from these
pressure-distribution curves, no pronounced ‘'drag
creep' is noted at low Mach number level; the 1ift
and the drag curves are shown in Fig.9.

By inspection of the distribution in the vicinity
of the shock-wave position in Figs.7 and 8, it was
almost evident that the boundary layer there was
still laminar. There were also symptoms of a short
bubble of laminar-separation at the steep recom-
pression region after the peak. The boundery layer

Fig. 9. The lift- and drag-coefficients
of the T7523-10 section. Natural
transition.
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Fig. 10. The upper-surface pressure distri-
bution of the 7523-10 section at o= 1.5°.
Fixed transition. ( cf. Fig. Ta.)



tripping technique was then applied with a rough-
ness band consisting.-of glass beads of 0.08 mm. in
dismeter placed at ¥.5% chord position from the
leading-edge (upper surface).The pressure distri-
bution at this fixed-transition condition revealed
more reasonable features in predicting the flow
condition at higher Reynolds numbers. However, the
pressure distribution around the peak was somewhat
disturbed by the roughness band (Fig.10). The tests
at higher Reynolds numbers are most desirable in
this respect.

3.2 T7545-10 Section

This is a profile belonging to the same series
as 7523~10 section, and isdesigned for the lift-
coefficient C; =0.145.

Tests of this wing were also performed in 2m.
Transonic Tunnel, but with a model of LOOmm. chord-
length and 800mm. span. The model was set vertically
100mm. apart from the floor-wall, and fixed at one
tip to the turn-table of the floor balance (an ex-
ternal balance). A pair of circular side-~plates of
lm. in diameter were placed at both wing-tips and
fixed independently to the wall, keeping small gaps
to both wing-tips. The pressure distribution was
always measured at the mid-span and the quarter-
span sections; as they showed excellent agreement
between them (except at the shock position where the
pressure was submitted to a sudden change), the
wing-tip effects were considered to be negligible
and the flow to be uniform.

In various respects the characteristics of this
wing section were like those of T7523-10 section.

The agreement with the theoretical distribution was
less satisfactory, possibly because the design lift-
coefficient was higher. Only the 'best agreement'
data is shown in Fig.6.

4, Other Lines of Investigation

Ever since the early stage of research on tran-
sonic aerofoils in NAL, empirical approach has been
attempted independently from the fore-mentioned
exact theory. The initiel objective was to explore
the section shape with a pronounced suction peak
which was to generate & practically shock-free flow
as proposed by Pearcey(lg; the later objective was
to get a quick access to the design of aerofoil sec-
tions based on the new technology, without restric-
tion imposed by an 'isentropic' flow which the exact
theory principally concerned. We had a small two-
dimentional, blowdown wind-tunnel (with a 100x400mm.
test section) at hand, and most of the experimental
works described in this Section were performed in
this tunnel. The Reynolds number obtained was of
the order 2x10% with a 100mm. chord wing model.

E;l_ J. Sato(lk), who had previously achieved an
improvement of the existing inverse method in the
incompressible flow theory, took advantage of his
method and designed a number of profiles including
those which were to generate a pronounced suction-
peak in the scope of the incompressible-flow theory.
Some of these profiles were tested at transonic Mach
numbers, and the results were very much encouraging.
An example of his profiles is shown in Fig.ll. A
series of these profiles were incorporated into a
three-dimentional model (a wing-fuselage model with
a swept and tapered wing) by the hand of the air-
craft industry as an alternative proposal of the
wing configuration of an aeroplane under development
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Fig. 11. The pressure distribution of the
No. 117-3-173 section at a= 3.66°.
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at that time.Results of the tests in the 2m. Tran-
sonic Tunnel showed a considerable improvement in
the aerodynamic characteristics, at least in the
transonic regime, of this new scheme compared with
other configurations in use of conventional wing
sections.

4.2 At a later period, N.Kamiya(l5) tried to work
out another procedure of designing transonic aero-
foil sections.

He first reconfirms with ample experimental data
the following, lately well-documented facts:

(i) Even if a wing section is in a supercritical
flow condition, the pressure distribution over the
subcritical parts on both surfaces of the wing can
be well predicted from the low-speed pressure dis-
tribution by way of Prandtl-Glauert rule, for
instance.

(ii) The pressure distribution along the super-
critical part of the aerofoil is difficult to pre-
dict, and the Prandtl-Glauert rule, if applied,
would give only a fictitious distribution there.
However, as the pressure distribution of upper and
lower surfaces is nearly independent from each
other, and particularly so when the flow 'freezes'
on one surface, it can be deduced that the super-
critical distributions of two wing-sections at a
same Mach number are at least the same if the shape
(or equivalently the low-speed pressure distribu-
tion) of the upper surfaces of them are the same.

Kemiya further verifies experimentally that:
(iii) The supercritical distributions of two wing
sections at different Mach numbers and possibly at
different angles of attack are approximetely the
same if the versions of them in terms of Prandti-
Glauert rule (the fictitious distributions) at
respective Mach numbers are the same.

Bearing these facts in mind, he concentrates on
the drag-divergence problem of the wing section.
He assumes that the superiority in respect of the
drag-divergence characteristics (that means the
drag-divergence Mach number Mpp is highest at a
given Cj~value and a given thickness-ratio, for
instance) of a wing section is well symbolized by
the pattern of the pressure (p/pg) distribution on
the upper surface of that particular wing secticn
at the drag-divergence condition.(Wing section
generating & strong shock on the lower surface at



Mpp are temporally excluded from the consideration.)
He selects a few examples from the pressure distri-
bution data of the pest, which did emerge under the
seemingly excellent drag-divergence conditions. A
criterion he adopts at the selection of the 'model!
distribution is that it would provide the value of
the integral

e fﬁ (P/PO)DD dx

over the wing upper surface as small as possible (
i.e. the enclosed area of the upper-surface pres-
sure-distribution curve as large as possible; c:

the chord-length, x: the chordwise distance from the
leading-edge, and the subscript DD denotes the drag-
divergence condition).

He then posturates that, if approximately the
same upper-surface pressure-distribution can be re-
produced at the drag-divergence condition of another
wing section subject possibly to different design
criteria, the latter would also be a good wing sec-
tion in respect of the drag-divergence character-
isties. Thus he formulates the following procedure
of designing a new profile which imitates the
'model' pressure distribution at different design
conditions.

STEP 1. One of the model pressure distribution p/pg
he specifies tentatively is that of T80-450-12 sec-
tion at the drag-divergence condition (M==0.T80,
@1=0.h5; the circumflex "~ denotes the 'model' con-
dition). From the shape of this profile, one first
calculate the incompressible pressure coefficient
¢, 1 - Then, one applies to it the Prandtl-Glauert

e and derives the fictitious pressure distribu-
tion (p/pg)pg et the Mach number Me.

STEP 2. The fictitious distribution (P/PO)PG Just
obtained is regarded to be that of a new profile at
a8 uniform-flow Mach number M,. The incompressible
pressure-coefficient Cp,I over the upper surface of
the new profile is then obtained by the reversed
process of the Prandtl-Glasuert rule. In other words,
Cp,I is given by the following equation based on the
definition of the pressure coefficient:

s 1 -

i . c
g P=td 8 ) = {ps

o
1,0 ., P>t
Jpg = pgl D=t "
where pg,p~, and g are the total, static, and dyna-
mic pressures, respectively, of the uniform flow,
B is the Prandtl-Glauert factor (1-M.2)1/2, and the
total pressure pg is set equal at both conditionms.
STEP 3. Let Cp 1 thus obtained be called as the
'reduced' Cp, 1, From the reduced Cp,T one can cal-
culate easily the shape of the new profile (the
inverse method is used). Sometimes, the reduced Cp,I
night have to be modified at the front peak in order
to obtain a feasible value of the suction-peak pres-
sure at Mw; meanwhile, the reduced Cp,I can be
modified almost arbitrarily at any chordwise posi-
tion where the subcritical flow 1s eventually to
develop at the Mach number Mu.

In Fig.1l2, some wing sections are shown, which
have been developed from the model section T80-450-
12. It is seen that they exhibit the pressure dis-
tribution on the upper surface like that of the
model section. It is interesting to note that pro-
files of considerably high Mpp have been obtained
by this procedure. An example is shown in Fig.13.
In Fig.l4 are plotted the Mpp values, versus Cj, of
several wing sections developed so far by this
method.
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Fig. 12. Profile shape and the pressure dis-
tribution of the model section 780-450-12
and other sections derived from that.
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5. Concluding Remarks

Since the time when the exact solution of the
hodograph equation was successfully utilized in the
investigation of the shock-free mixed-flow around
an obstacle which was much like an aerofoil section
in shape, this approach has been expected to make
a powerful tool in the practical design problems.
lowadays there are several methods of computation
based on the hodograph method, and families of aero-
foil sections can be computed therefrom; practically
shock-free flow on these profiles has been verified
also by wind-tunnel tests. It cannot be denied,
however, that,much of these profile-shapes have been
determined according to the mathematical convenience
rather than the physical requirement. If we seek an
analogy in the history of classical aerofoil theory,
we are in a situation as if we have just got posses-
sion of Joukowski aerofoils. It is most desirable
that we could increase the number of computed pro-
files, and above all,design a wing section which
answer to the physical or design requirements.

One notices from the experiment that the develop-
ment of the flow on a (peaky-type) aerofoil, after
the supercritical flow is first established at the
peak, seems to be as follows.

i) As far as the Mach number is not so much higher
than the critical one, the flow comes back to the
subsonic state by a severe recompression aft of the
peek; and, in genersl cases, a portion of the re-
compression is effectuasted by a shock wave, either
weak or strong. If the shock wave is too strong, it
would result in a high drag-level of the wing sec-
tion at low Mach numbers (i.e. the drag creep).

(ii) As the Mach number goes up, the recompression
aft of the peak comes to be more or less gradual for
certain aerofoil sections. Under the most favourable
condition it is constituted by the isentropic com-
pression that the theory predicts. At still higher
Mach numbers, the gradual recompression collapses;
the supercriticel flow, now forming a plateau of
high-suction region, is finally terminated by a
(terminal) shock which brings about the drag diver-
gence.

(ii') For other wing sections, for which the
leading-edge suction peak is too high and steep,
the severe recompression which follows does not
swich over to a gradual deceleration of the flow.
Instead, the flow, after going down rapidly to the
subsonic state,experiences again the expansion at
the mid-chord position; that leads the flow afresh
into the supercritical state accompanied by s termi-
nel shock. (Sometimes a double-shock system is ob-
served.) It is interesting to note that Mpp may
sometimes be rather high in such cases. At higher
Mach numbers, the intermediate subsonic region dis-
appears; then occurs the formation of the plateau,
and the final state of affairs is similar to that
of the process (ii).

Taking account of the fact that the drag rise in
g practical sense of a shock-free profile takes
place at a considerably higher Mach number than that
of the shock-free condition, and from the observation
described above, we notice there are many interesting
phenomena to be investigated at off-design condi-
tions, which lie between the critical and the drag-
divergence Mach numbers. It is most desirable that
the existing methods of approach, including the
direct method and the wind-tunnel test, will be fully
utilized for the investigation of the flow phenomena
comprehensive of these problems.
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DL HFITYLEHETON

D. Brown (National Aeronautical Establishment,
Ottawa, Canada): What was the value of the aspect
ratio of the model tested in the Ludwieg tube? Was
there any removal of the wall boundary layer?

T. Shigemi: The question is in fact related to a
certain test result stated in the author's oral
presentation and shown in a slide at the 9th ICAS
Congress, which is not included in the printed
material. For the convenience of readers, the author
will reproduce here the point under discussion and
the test result in question (see Fig. 5').
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The local Mach number distribution on the 7523-10
section at nearly shock-free flow condition is in-
dicated as Fig.5 in this material: that is the test
result obtained in NAL 2mx2m Transonic Wind Tunnel.
Referring to the Reynolds number (25%106, based on
the chord length) of this test, the author added
that a test result with a little higher Reynolds
number (14x106) of the same aerofoil section had
recently been obtained by K. Takashima using NAL's
pilot Ludwieg tube of 12cm X 36cm test section. The
corresponding data by this Ludwieg tube were plotted
in symbols A in Fig. 5' (which was to replace Fig.5),
and compared with the former data. From the good
agreement of these results at different Reynolds
numbers, the author conjectured that, as far as the
nearly shock-free condition (which these tests stand
for) was concerned, the pressure distribution did
not seem to suffer so much from the Reynolds-number
effects.

Now, coming back to the point of question, the
author supplements his comment saying that the size
of the model tested in the Ludwieg tube was 1l2cm
span and l4cm chord; hence the value of the aspect
ratio was less than unity. Removal of the side-
wall boundary layer was not yet provided, since the
two-dimensional test in the Ludwieg tube at NAL
was presently at the preliminary stage.

As this model may be considered somewhat over-
sized, there might be certain questions in respect
of the two-dimensionality of the flow (as the writer
suggests) and also of the blockage ratio, in addition
to the other well-known difficulties in testing an
aerofoil at supercritical state. However, such
oversize model would be justifiable sometimes under
limited test conditions; shock-free and comparatively
low lift conditions, for instance. The author does
not think that the agreement of the data was a mere
coincidence by chance.
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